You are right that there is some arbitrariness involved when picking a solution, however it's a bit more subtle than that.
Let's say our problem has N free variables.
Step 1 is finding the subset of R^N that is the solution to the root finding problem. If this subset is a point, we are done (return that point). Note that if there is no solution at all bidicalc should correctly report it.
Step 2 is if the solution subset is not a point. Then there is multiple (maybe even an infinity of) solutions, and picking one is indeed arbitrary.
> Even a normal spreadsheet is fairly complex beast. But the novel thing about bidicalc is the backwards solver. Mathematically, updating a spreadsheet "backward" is a (potentially underdetermined) root finding problem, because we are trying to find a vector of unknowns such that , where F is the function computed by the cells formulas, and G is the objective value entered in the cell. Note that F is not necessarily a single formula, but the result of composing an upstream graph of cells into a single function.
> The actual root-finding solver is a custom algorithm that I made. It a general purpose algorithm that will find one root of any continuous-almost-everywhere function for which a complete syntactic expression is known. It uses a mix of continuous constraint propagation on interval union arithmetic , directional Newton's method and dichotomic search. It is of course limited by floating point precision and available computation time.
But that really doesn't answer your question. I see no reason why the solver wouldn't decide every time it had a two-variable summation that ADD(X+Y) doesn't reverse to X=-90 and Y=100.
Commercial products are run by product managers: they do whatever the business needs that day, and if it doesn't work for most inputs, "that's fine, our users will only ever need addition". Fun open source projects, run by the same programmer who does the implementation, obsess over finding the generic solution to inverting a function and end up with a version that isn't useful for anyone's specific case.
The user hints principle is preferred fixed so they can see what rate is needed for a givem amount of interest.
Hints could have a precedence order (then prefer to fix earlier terms on an operation on a tie breaker.)