It's not a clean-room implementation because of this:
> The fix was to use GCC as an online known-good compiler oracle to compare against
I agree that having a reference compiler available is a huge caveat though. Even if we completely put training data leakage aside, they're developing against a programmatic checker for a spec that's already had millions of man hours put into it. This is an optimal scenario for agentic coding, but the vast majority of problems that people will want to tackle with agentic coding are not going to look like that.
I'd argue that no one would really care given it's GCC.
But if you worked for GiantSodaCo on their secret recipe under NDA, then create a new soda company 15 years later that tastes suspiciously similar to GiantSodaCo, you'd probably have legal issues. It would be hard to argue that you weren't using proprietary knowledge in that case.
It's all but a clean-room design. A clean-room design is a very well defined term: "Clean-room design (also known as the Chinese wall technique) is the method of copying a design by reverse engineering and then recreating it without infringing any of the copyrights associated with the original design."
https://en.wikipedia.org/wiki/Clean-room_design
The "without infringing any of the copyrights" contains "any".
We know for a fact that models are extremely good at storing information with the highest compression rate ever achieved. It's not because it's typically decompressing that information in a lossy way that it didn't use that information in the first place.
Note that I'm not saying all AIs do is simply compress/decompress information. I'm saying that, as commenters noted in this thread, when a model was caught spotting out Harry Potter verbatim, there is information being stored.
It's not a clean-room design, plain and simple.
It is a research topic for heaven's sake:
https://arxiv.org/pdf/2601.02671
> For Claude 3.7 Sonnet, we were able to extract four whole books near-verbatim, including two books under copyright in the U.S.: Harry Potter and the Sorcerer’s Stone and 1984 (Section 4).
They used a lot of different techniques to prompt with actual text from the book, then asked the LLM to continue the sentences. I only skimmed the paper but it looks like there was a lot of iteration and repetitive trials. If the LLM successfully guessed words that followed their seed, they counted that as "extraction". They had to put in a lot of the actual text to get any words back out, though. The LLM was following the style and clues in the text.
You can't literally get an LLM to give you books verbatim. These techniques always involve a lot of prompting and continuation games.
The lesson here is that the Internet compresses pretty well.
A frontier model (e.g. latest Gemini, Gpt) is likely several-to-many times larger than 500GB. Even Deepseek v3 was around 700GB.
But your overall point still stands, regardless.
The distinction may not have mattered for copyright laws if things had gone down differently, but the gap between "blurry JPEG of the internet" and "learned stuff" is more obviously important when it comes to e.g. "can it make a working compiler?"
It is enough to have read even parts of a work for something to be considered a derivative.
I would also argue that language models who need gargantuan amounts of training material in order to work by definition can only output derivative works.
It does not help that certain people in this thread (not you) edit their comments to backpedal and make the followup comments look illogical, but that is in line with their sleazy post-LLM behavior.
For IP rights, I'll buy that. Not as important when the question is capabilities.
> I would also argue that language models who need gargantuan amounts of training material in order to work by definition can only output derivative works.
For similar reasons, I'm not going to argue against anyone saying that all machine learning today, doesn't count as "intelligent":
It is perfectly reasonable to define "intelligence" to be the inverse of how many examples are needed.
ML partially makes up for being (by this definition) thick as an algal bloom, by being stupid so fast it actually can read the whole internet.
https://arxiv.org/pdf/2601.02671
> For Claude 3.7 Sonnet, we were able to extract four whole books near-verbatim, including two books under copyright in the U.S.: Harry Potter and the Sorcerer’s Stone and 1984 (Section 4).
Edit: actually, no, I take that back, that's just very similar to some other research I was familiar with.
Because it _has_ been enough, that if you can recall things, that your implementation ends up not being "clean room", and trashed by the lawyers who get involved.
I mean... It's in the name.
> The term implies that the design team works in an environment that is "clean" or demonstrably uncontaminated by any knowledge of the proprietary techniques used by the competitor.
If it can recall... Then it is not a clean room implementation. Fin.
Citing a random arXiv paper from 2025 doesn't mean "they" used this technique. It was someone's paper that they uploaded to arXiv, which anyone can do.