Yeah I would get patterns where, initial prototypes were promising, then we developed something that was 90% close to design goals, and then as we try to push in the last 10%, drift would start breaking down, or even just forgetting, the 90%.
So I would start getting to 90% and basically starting a new project with that as the baseline to add to.
These patterns seem to be picking up speed in the general population; makes the human race seem quite easily hackable.
With where the models are right now you still need a human in the loop to make sure you end up with code you (and your organisation) actually understands. The bottle neck has gone from writing code to reading code.
This has always been the bottleneck. Reviewing code is much harder and gets worse results than writing it, which is why reviewing AI code is not very efficient. The time required to understand code far outstrips the time to type it.
Most devs don’t do thorough reviews. Check the variable names seem ok, make sure there’s no obvious typos, ask for a comment and call it good. For a trusted teammate this is actually ok and why they’re so valuable! For an AI, it’s a slot machine and trusting it is equivalent to letting your coworkers/users do your job so you can personally move faster.