And the probability distribution is simple: a given (x,y,r) is as likely as its circumference in the unit circle.
Reasoning: Let C:(x,y,r) a given circle. We want to know how likely is it that the circle on 3 random points are close to it, closer than a given value d. (A d wide ball or cube around C in (x,y,r) space. Different shapes lead to diffferent constants but same for every circle.) The set of good 3 points is more or less the same as the set of 3 points from the point set C(d): make C's circumference d thick, and pick the 3 points from this set. Now not any 3 points will suffice, but we can hope that the error goes to 0 as d goes to 0 and there is no systematic error.
Then we just have to integrate.
ChatGPT got me the result 2/3, so it's incorrect. I guess the circumference must not be the right distribution.