That's not the interesting part. The interesting part is that I thought everyone is the same, like me.
It was a big and surprising revelation that people love counting or algebra in just the same way I feel about geometry (not the finite kind) and feel awkward in the kind of mathematics that I like.
It's part of the reason I don't at all get the hate that school Calculus gets. It's so intuitive and beautifully geometric, what's not to like. .. that's usually my first reaction. Usually followed by disappointment and sadness -- oh no they are contemplating about throwing such a beautiful part away.
The obsession with rigor that later developed -- while necessary -- is really an "advanced topic" that shouldn't displace learning the intuition and big picture concepts. I think math up through high school should concentrate on the latter, while still being honest about the hand-waving when it happens.
calculus works... because it was almost designed for Mechanics. If the machine it's getting input, you have output. When it finished getting input, all the output you get yields some value, yes, but limits are best understood not for the result, but for the process (what the functions do).
You are not sending 0 coins to a machine, do you? You sent X to 0 coins to a machine. The machine will work from 2 to 0, but 0 itself is not included because is not a part of a changing process, it's the end.
Limits are for ranges of quantities over something.
But instead calculus is taught from fundamentals, building up from sequences. And a lot of complexity and hate comes from all those "technical" theorems that you need to make that jump from sequences to functions. E.g. things like "you can pick a converging subsequence from any bounded sequence".
In Maths classes, we started with functions. Functions as list of pairs, functions defined by algebraic expressions, functions plotted on graph papers and after that limits. Sequences were peripherally treated, just so that limits made sense.
Simultaneously, in Physics classes we were being taught using infinitesimals, with the a call back that "you will see this done more formally in your maths classes, but for intuition, infinitesimals will do for now".
(attributed to Jerry Bona)
(Yes, mathematicians really use it. It makes parity a simpler polynomial than the normal assignment).
There's no "intend to". The complex numbers are what they are regardless of us; this isn't quantum mechanics where the presence of an observer somehow changes things.