If you need a stronger guarantee than just a "string that passes simple email regex", create another "newtype" that parses the `Email` type further into `ValidatedEmail { raw: String, validationTime: DateTime }`.
While it does add some "boilerplate-y" code no matter what kind of syntactical sugar is available in the language of your choice, this approach utilizes the type system to enforce the "pass only non-malformed & working email" rule when `ValidatedEmail` type pops up without constantly remembering to check `email.isValidated`.
This approach's benefit varies depending on programming languages and what you are trying to do. Some languages offer 0-runtime cost, like Haskell's `newtype` or Rust's `repr(transparent)`, others carry non-negligible runtime overhead. Even then, it depends on whether the overhead is acceptable or not in exchange for "correctness".
Is the user account validated? Send an email to their email string. Is it not validated? Then why are we even at a point in the code where we're considering emailing the user, except to validate the email.
You can use similar logic to what you described, but instead with something like User and ValidatedUser. I just don't think there's much benefit to doing it with specifically the email field and turning email into an object. Because in those examples you can have a User whose email property is a ParseError and you still end up having to check "is the email property result for this user type Email or type ParseError?" and it's very similar to just checking a validation bool except it's hiding what's actually going on.
You have 2 types
UnvalidatedEmail
ValidatedEmail
Then ValidatedEmail is only created in the function that does the validation: a function that takes an UnvalidatedEmail and returns a ValidatedEmail or an error object.
So an object could have a field
email: UnvalidatedEmail | ValidatedEmail
Nothing would be nullable there in that case. You could match on the type and break if not all cases are handled.