But then in India we discovered that it can really participate with the the other bonafide numbers as a first class citizen of numbers.
It is not longer a place holder but can be the argument of the binary functions, PLUS, MINUS, MULTIPLY and can also be the result of these functions.
With i we have a similar observation, that it can indeed be allowed as a first class citizen as a number. Addition and multiplication can accept them as their arguments as well as their RHS. It's a number, just a different kind.
On a similar note, why insist that "i" (or a negative, for that matter) is an "attribute" on a number rather than an extension of the concept of number? In one sense, this is a just a definitional choice, so I don't think either conception is right or wrong. But I'm still not getting your preference for the attribute perspective. If anything, especially in the case of negative numbers, it seems less elegant than just allowing the negatives to be numbers?
The point of contention that leads to 3 interpretations is whether you assume i acts like a number. My argument is that people generally answer yes, because of Eulers identity (which is often stated as example of mathematical beauty).
My argument is that i does not act like a number, it acts more like an operator. And with i being an operator, C is not really a thing.