Theorem. If ZFC is consistent, then there is a model of ZFC that has a definable complete ordered field ℝ with a definable algebraic closure ℂ, such that the two square roots of −1 in ℂ are set-theoretically indiscernible, even with ordinal parameters.Haven’t thought it through so I’m quite possibly wrong but it seems to me this implies that in such a situation you can’t have a coordinate view. How can you have two indistinguishable views of something while being able to pick one view?