With LLMs, The "knowing" you're describing is trivial and doesn't really constitute knowing at all. It's just the physics of the substrate. When people say LLMs are a black box, they aren't talking about the hardware or the fact that it's "math all the way down." They are talking about interpretability.
If I hand you a 175-billion parameter tensor, your 'knowledge' of logic gates doesn't help you explain why a specific circuit within that model represents "the concept of justice" or how it decided to pivot a sentence in a specific direction.
On the other hand, the very professions you cited rely on interpretability. A civil engineer doesn't look at a bridge and dismiss it as "a collection of atoms" unable to go further. They can point to a specific truss and explain exactly how it manages tension and compression, tell you why it could collapse in certain conditions. A software engineer can step through a debugger and tell you why a specific if statement triggered.
We don't even have that much for LLMs so why would you say we have an idea of what's going on ?
This reminds me of Searle's insipid Chinese Room; the rebuttal (which he never had an answer for) is that "the room understands Chinese". It's just not satisfying to someone steeped in cultural traditions that see people as "souls". But the room understands Chinese; the LLM understands language. It is what it is.
[1] Since it's deterministic, it certainly can be debugged through, but you probably don't have the patience to step through trillions of operations. That's not the technology's fault.
Again, we lack even this much with LLMs so why say we know how they work ?