>You should drive your car to the car wash. Even though it's only 50 meters away (which is very close), you'll need your car physically present at the car wash to get it washed. If you walk there, you'll arrive without your car, which wouldn't accomplish your goal of getting it washed.
>You'll need to drive your car to the car wash. While 50 meters is a very short distance (just a minute's walk), you need your car to actually be at the car wash to get it washed. Walking there without your car wouldn't accomplish your goal!
etc. The reasoning never second-guesses it either.
A shame they're turning it of in 2 days.
What opinion? It's evaluation function simply returned the word "Most" as being the most likely first word in similar sentences it was trained on. It's a perfect example showing how dangerous this tech could be in a scenario where the prompter is less competent in the domain they are looking an answer for. Let's not do the work of filling in the gaps for the snake oil salesmen of the "AI" industry by trying to explain its inherent weaknesses.
It just turns out that there's quite a bit of knowledge and understanding baked into the relationships of words to one another.
LLMs are heavily influenced by preceding words. It's very hard for them to backtrack on an earlier branch. This is why all the reasoning models use "stop phrases" like "wait" "however" "hold on..." It's literally just text injected in order to make the auto complete more likely to revise previous bad branches.
But they are literally predicting the next token. They do nothing else.
Also if you think they were just predicting the next token in 2021, there has been no fundamental architecture change since then. All gains have been via scale and efficiency optimisations (not to discount that, an awful lot of complexity in both of these)
> It's evaluation function simply returned the word "Most" as being the most likely first word in similar sentences it was trained on.
Which is false under any reasonable interpretation. They do not just return the word most similar to what they would find in their training data. They apply reasoning and can choose words that are totally unlike anything in their training data.
If you prompt it:
> Complete this sentence in an unexpected way: Mary had a little...
It won't say lamb. Any if you think whatever it says was in the training data, just change the constraints until you're confident it's original. (E.g. tell it every word must start with a vowel and it should mention almonds.)
"Predicting the next token" is also true but misleading. It's predicting tokens in the same sense that your brain is just minimizing prediction error under predictive coding theory.
If anything, they predict words based on a heuristic ensemble of what word is most likely to come next in similar sentences and what word is most likely to give a final higher reward.
So... "finding the most likely next word based on what they've seen on the internet"?
[1] https://cdn.openai.com/pdf/d04913be-3f6f-4d2b-b283-ff432ef4a...
- An LLM that works through completely different mechanisms, like predicting masked words, predicting the previous word, or predicting several words at a time.
- A normal traditional program, like a calculator, encoded as an autoregressive transformer that calculates its output one word at a time (compiled neural networks) [1][2]
So saying "it predicts the next word" is a nothing-burger. That a program calculates its output one token at a time tells you nothing about its behavior.
Well it does - it tells me it is utterly un-reliable, because it does not understand anything. It just merely goes on, shitting out a nice pile of tokens that placed one after another kind of look like coherent sentences but make no sense, like "you should absolutely go on foot to the car wash". A completely logical culmination of Bill Gates' idiotic "Content is King" proclamation of 20 years ago.
Yes I can, and it shows everytime the "smart" LLMs suggest us to take a walk to the carwash or suggests 1.9 < 1.11 etc...
The models that had access to search got ot right.But, then were just dealing with an indirect version of Google.
(And they got it right for the wrong reasons... I.e this is a known question designed to confuse LLMs)
There’s a level of earnestness here that tickles my brain.
There is such a thing as "mobile car wash" where they come to you, so "most" does seem appropriate.
And it is the kind of things a (cautious) human would say.
For example, that could be my reasoning: It sounds like a stupid question, but the guy looked serious, so maybe there are some types of car washes that don't require you to bring your car. Maybe you hand out the keys and they pick your car, wash it, and put it back to its parking spot while you are doing your groceries or something. I am going to say "most" just to be sure.
Of course, if I expected trick questions, I would have reacted accordingly, but LLMs are most likely trained to take everything at face value, as it is more useful this way. Usually, when people ask questions to LLMs they want an factual answer, not the LLM to be witty. Furthermore, LLMs are known to hallucinate very convincingly, and hedged answers may be a way to counteract this.
What if AI developed sarcasm without us knowing… xD
I mean I can imagine a scenario where they have pipe of 50m which is readily available commercially?
I guess it gives the correct answer now. I also guess that these silly mistakes are patched and these patches compensate for the lack of a comprehensive world model.
These "trap" questions dont prove that the model is silly. They only prove that the user is a smartass. I asked the question about pregnancy only to to show a friend that his opinion that LLMs have phd level intelligence is naive and anthropomorphic. LLMs are great tools regardless of their ability to understand the physical reality. I don't expect my wrenches to solve puzzles or show emotions.