For example. Suppose I have 2^128 unique playing cards. I randomly select 2^64 of them and place them in a deck. Someone proceeds to draw 2^8 cards from that deck, replacing and reshuffling between each draw. Does it really matter that those draws weren't technically independent with respect to the larger set? In a sense they are independent so long as you view what happened as a single instance of a procedure that has multiple phases as opposed to multiple independent instances. And in practice with a state space so much larger than the sample set the theoretical aspect simply doesn't matter one way or the other.
We can take this even farther. Don't replace and reshuffle after each card is drawn. Since we are only drawing 2^8 of 2^64 total cards this lack of independence won't actually matter in practice. You would need to replicate the experiment a truly absurd number of times in order to notice the issue.