upvote
I am very interested in improving the user-experience around precompilation and performance, may I ask why you are creating a sysimage from scratch?

> I would opt into prebuilt x86_64 generic binaries if Julia had them

The environment varial JULIA_CPU_TARGET [1] is what you are looking for, it controls what micro-architecture Julia emits for and supports multi-versioning.

As an example Julia is built with [2]: generic;sandybridge,-xsaveopt,clone_all;haswell,-rdrnd,base(1)

[1] https://docs.julialang.org/en/v1/manual/environment-variable...

[2] https://github.com/JuliaCI/julia-buildkite/blob/9c9f7d324c94...

reply
I have a monorepo full of Julia analysis scripts written by different people. I want to run them in a Docker container on ephemeral Linux EC2 instances and on user Windows workstations. I don't want to sit through precompilation of all dependencies whenever a new machine runs a particular version of the Julia project for the first time because it takes a truly remarkable amount of time. For the ephemeral Linux instances running Julia in Docker, that happens on every run. Precompiling at Docker build time doesn't help you; it precompiles everything again when you run that container on a different host computer. R and Python don't work like this; if you install everything during the Docker image build, they will not suddenly trigger a lengthy recompilation when run on a different host machine.

I am intimately familiar with JULIA_CPU_TARGET; it's part of configuring PackageCompiler and I had to spend a fair amount of time figuring it out. Mine is [0]. It's not related to what I was discussing there. I am looking for Julia to operate a package manager service like R's CRAN/Posit PPM or Python's PyPI/Conda that distributes compiled binaries for supported platforms. JuliaHub only distributes source code.

[0] generic;skylake-avx512,clone_all;cascadelake,clone_all;icelake-server,clone_all;sapphirerapids,clone_all;znver4,clone_all;znver2,clone_all

reply
My point is if you set JULIA_CPU_TARGET during the docker build process, you will get relocatable binaries that are multi-versioned and will work on other micro-architecture? It's not just for PackageCompiler, but also for Julia's native code cache.
reply
> It took me days to get that build to work; doing this compilation once in CI so you don't have to do it on every machine is trickier than it sounds in Julia

You may be interested in looking into AppBundler. Apart from the full application packaging it also offers ability to make Julia image bundles. While offering sysimage compilation option it also enables to bundle an application via compiled pkgimages which requires less RAM and is much faster to compile.

reply