> It's a hot and dusty day in Arizona and I need to wash my elephant. There's a creek 300 feet away. Should I ride my elephant there or should I just walk there by myself?
Gemini said:
That sounds like quite the dusty predicament! Given the options, you should absolutely ride (or lead) your elephant to the creek.
Here is the straightforward reality of the situation:
The Logistical Nightmare of Walking Alone: If you walk to the creek by yourself, your elephant stays at your starting point. Elephants require a massive amount of water for a bath. Unless you are planning an extreme workout carrying hundreds of buckets of water 300 feet back through the Arizona heat, you're going to have a very bad time—and the elephant will stay dusty.
The Perks of Going Together: 300 feet is a very short, easy stroll for an elephant. Plus, elephants generally love water and mud! Letting your elephant get right into the creek will make the washing process much easier for you and much more enjoyable for them. They can even use their trunk to help hose themselves down.
Grab some elephant-safe soap and head down to the water together!Would you like some tips on the best methods and tools for scrubbing down an elephant?
You should definitely ride the elephant (or at least lead it there)!
Here is the logic:
If you walk there by yourself, you will arrive at the creek, but the dirty elephant will still be 300 feet back where you started. You can't wash the elephant if it isn't with you!
Plus, it is much easier to take the elephant to the water than it is to carry enough buckets of water 300 feet back to the elephant.
Would you like another riddle, or perhaps some actual tips on how to keep cool in the Arizona heat?
> Would you like me to check the local weather forecast to make sure it's not going to rain right after you wash it?
Regardless of what I do, the days I decide to wash my car, it ALWAYS rains the day after, even if I look at the weather report and it says sunny. Cute that Gemini thinks it can predict it better than universe's will.
Undeniable universal truth. I sometimes find myself making plans based on the fact that the most annoying possible outcome is also the most likely one.
The car gets dirty again when it rains and when it gets dry again. I guess dust, salt, pollution and more is what gets mixed in and put on the chassi as it rains, falls from roofs and splashes, but can't say I've investigated deeply enough. Not the end of the world, just annoying it keeps happening.
This kind of reflexive criticism isn't helpful, it's closer to a fully generalized counter-argument against LLM progress, whereas it's obvious to anyone that models today can do things they couldn't do six months ago, let alone 2 years back.
I double checked and tested on AI Studio, since you can still access the previous model there:
>You should drive. >If you walk there, your car will stay behind, and you won't be able to wash it.
Thinking models consistently get it correct and did when the test was brand new (like a week or two ago). It is the opposite of surprising that a new thinking model continues getting it correct, unless the competitors had a time machine.
The model getting it correct or not at any given instance isn't the point, the point is if the model ever gets it wrong we can still assume that it still has some semblance of stochasticity in its output, given that a model is essentially static once it is released.
Additionally, hey don't learn post training (except for in context which I think counts as learning to some degree albeit transient), if hypothetically it answers incorrectly 1 in 50 attempts, and I explain in that 1 failed attempt why it is wrong, it will still be a 1-50 chance it gets it wrong in a new instance.
This differs from humans, say for example I give an average person the "what do you put in a toaster" trick and they fall for it, I can be pretty confident that if I try that trick again 10 years later they will probably not fall for it, you can't really say that for a given model.
I think that's why benchmarking is so hard for me to fully get behind, even if we do it over say, 20 attempts and average it. For a given model, those 20 attempts could have had 5 incredible outcomes and 15 mediocre ones, whereas another model could have 20 consistently decent attempts and the average score would be generally the same.
We at least see variance in public benchmarks, but in the internal examples that's almost never the case.