upvote
Because Search is not agentic.

Most of Gemini's users are Search converts doing extended-Search-like behaviors.

Agentic workflows are a VERY small percentage of all LLM usage at the moment. As that market becomes more important, Google will pour more resources into it.

reply
> Agentic workflows are a VERY small percentage of all LLM usage at the moment. As that market becomes more important, Google will pour more resources into it.

I do wonder what percentage of revenue they are. I expect it's very outsized relative to usage (e.g. approximately nobody who is receiving them is paying for those summaries at the top of search results)

reply
> Most agent actions on our public API are low-risk and reversible. Software engineering accounted for nearly 50% of agentic activity, but we saw emerging usage in healthcare, finance, and cybersecurity.

via Anthropic

https://www.anthropic.com/research/measuring-agent-autonomy

this doesn’t answer your question, but maybe Google is comfortable with driving traffic and dependency through their platform until they can do something like this

https://www.adweek.com/media/google-gemini-ads-2026/

reply
> (e.g. approximately nobody who is receiving them is paying for those summaries at the top of search results)

Nobody is paying for Search. According to Google's earnings reports - AI Overviews is increasing overall clicks on ads and overall search volume.

reply
So, apparently switching to Kagi continues to pay in dividends, elegantly.

No ads, no forced AI overview, no profit centric reordering of results, plus being able to reorder results personally, and more.

reply
the agentic benchmarks for 3.1 indicate Gemini has caught up. the gains are big from 3.0 to 3.1.

For example the APEX-Agents benchmark for long time horizon investment banking, consulting and legal work:

1. Gemini 3.1 Pro - 33.2% 2. Opus 4.6 - 29.8% 3. GPT 5.2 Codex - 27.6% 4. Gemini Flash 3.0 - 24.0% 5. GPT 5.2 - 23.0% 6. Gemini 3.0 Pro - 18.0%

reply
In mid-2024, Anthropic made the deliberate decision to stop chasing benchmarks and focus on practical value. There was a lot of skepticism at the time, but it's proven to be a prescient decision.
reply
Benchmarks are basically straight up meaningless at this point in my experience. If they mattered and were the whole story, those Chinese open models would be stomping the competition right now. Instead they're merely decent when you use them in anger for real work.

I'll withhold judgement until I've tried to use it.

reply
What's your opinion of glm5 if you had a chance to use it
reply
Ranking Codex 5.2 ahead of plain 5.2 doesn't make sense. Codex is expressly designed for coding tasks. Not systems design, not problem analysis, and definitely not banking, but actually solving specific programming tasks (and it's very, very good at this). GPT 5.2 (non-codex) is better in every other way.
reply
Codex has been post-trained for coding, including agentic coding tasks.

It's certainly not impossible that the better long-horizon agentic performance in Codex overcomes any deficiencies in outright banking knowledge that Codex 5.2 has vs plain 5.2.

reply
It could be problem specific. There are certain non program things that opus seems better than sonnet at as well
reply
Swapped sonnet and opus on my last reply, oops
reply
Marketing team agree with benchmark score...
reply
LOL come on man.

Let's give it a couple of days since no one believes anything from benchmarks, especially from the Gemini team (or Meta).

If we see on HN that people are willing switching their coding environment, we'll know "hot damn they cooked" otherwise this is another wiff by Google.

reply
You can’t put Gemini and Meta in the same sentence. Llama 4 was DOA, and Meta has given up on frontier models. Internally they’re using Claude.
reply
After spending all that money and firing a bunch of people? Is the new group doing anything at this point?
reply
My guess is that Gemini team didn't focus on the large-scale RL training for the agentic workload. And they are trying to catch up with 3.1.
reply
I suspect a large part of Google's lag is due to being overly focused on integrating Gemini with their existing product and app lines.
reply
deleted
reply
It's like anything Google - they do the cool part and then lose interest with the last 10%. Writing code is easy, building products that print money is hard.
reply
One does not need products if you have monopoly on search
reply
That monopoly is worth less as time goes by and people more and more use LLMs or similar systems to search for info. In my case I've cut down a lot of Googling since more competent LLMs appeared.
reply
Can you explain what you mean by its bad at agentic stuff?
reply
Accomplish the task I give to it without fighting me with it.

I think this is classic precision/recall issue: the model needs to stay on task, but also infer what user might want but not explicitly stated. Gemini seems particularly bad that recall, where it goes out of bounds

reply
cool thanks for the explanation
reply