It's a bit hard to trick reasoning models, because they explore a lot of the angles of a problem, and they might accidentally have an "a-ha" moment that leads them on the right path. It's a bit like doing random sampling and stumbling upon the right result after doing gradient descent from those points.
I am trying to think what's the best way to give most information about how the AI models fail, without revealing information that can help them overfit on those specific tests.
I am planning to add some extra LLM calls, to summarize the failure reason, without revealing the test.