How is that going to work? Cryogenic liquid hydrogen? High pressure tanks? Those don't seem practical for an airplane.
What does work for airplanes is to use carbon atoms that hydrogen atoms can attach to. Then, it becomes a liquid that can easily be stored at room temperature in lightweight tanks. Very high energy density, and energy per weight!
(I think it's called kerosene.)
It’s not a coincidence that where easy of handling, storage safety, and high energy density are needed everything seems to converge on compression ignition medium to long chain liquid hydrocarbons.
Last time I checked it needs to be stored in cryo / pressure vessel and it also leaks through steel and ruins its structural properties in the process.
No. Not for using Hydrogen for transportation. People have been trying to use Hydrogen for transportation for more than 50 years. These people are trying to bend the laws of physics. And there are a lot of con artists in the mix who prey on the gullible. See the convicted fraudster Trevor Milton of Nikola fame.
Of course they can. Toyota sells BEVs. As time goes on BEVs will become a greater percentage of their sales.
https://electrek.co/2026/01/09/toyota-electric-pickup-images...
The 2026 bZ Woodland [1] looks pretty nice in my opinion.
[1] https://arstechnica.com/cars/2026/02/looks-a-lot-like-an-ele...
Here in Norway Toyota was invited to include the bZ4X in this years winter range test[1], but they declined. Suzuki entered with their eVitara model, which is a "technological twin" of the Toyota Urban Cruiser.
The Urban Cruiser really disappointed in a regular test performed in cold weather[2]. So perhaps unsurprisingly, the Suzuki eVitara was by far the worst in the winter range test, with the least range overall and more than 40% reduction compared to its WLTP range, among the worst in the test.
[1]: https://www.tek.no/nyheter/nyhet/i/d4mMkA/verdens-stoerste-r...
I want an appliance that just works. The Corolla and Camry were this for petrol.
I love my Leaf but it isn’t a Carolla.
What’s with the turning circle on the Leaf?
https://electrek.co/2025/10/13/toyotas-best-selling-car-elec...
Right now, liquid fuels have about 10x the energy density of batteries. Which absolutely kills it for anything outside of extreme short hop flights. But electric engines are about 3x more efficient than liquid fuel engines. So now we're only 3x-4x of a direct replacement.
That means we are not hugely far off. Boeing's next major plane won't run on batteries, but the one afterwards definitely will.
Jet engines work better. Boeing's next major plane will have jet engines, just like their previous major planes.
Synthetic, carbon neutral jet fuel will be the future for commercial jets.
The math leads out an important factor. As the liquid fuel burns, the airplane gets lighter. A lot lighter. Less weight => more range. More like 6x-8x.
Batteries don't get lighter when they discharge.
Given the great energy densities and stability in transport of hydrocarbons, there's already some plants out there synthesising them directly from green sources, so that could be a solution if we don't manage to increase battery densities by another order of magnitude.
I didn't realize that a "green" carbon atom is different from a regular carbon atom. They both result in CO2 when burned.
Literally essential plant nutrients, essential for life.
Tangentially related, the 2022 Hunga Tonga–Hunga Haʻapai volcanic eruption ejected so much water vapour in to the upper atmosphere, it was estimated to have ongoing climate forcing effects for up to 10 years.
Water vapour is a stronger greenhouse gas than carbon dioxide.
And we heard precisely nothing about that in the media other than some science specific sources at the time and nothing on an ongoing basis.
From Wikipedia:
The underwater explosion also sent 146 million tons of water from the South Pacific Ocean into the stratosphere. The amount of water vapor ejected was 10 percent of the stratosphere's typical stock. It was enough to temporarily warm the surface of Earth. It is estimated that an excess of water vapour should remain for 5–10 years.
https://en.wikipedia.org/wiki/2022_Hunga_Tonga%E2%80%93Hunga...
Global warming is not fake, there's tons and tons of evidence it is real and the weather is getting more and more extreme as humans continue to burn petrol.
We should be moving towards being able to terraform Earth not because of anthropogenic climate forcing, but because one volcano or one space rock could render our atmosphere overnight rather uncomfortable.
You won’t find the Swedish Doom Goblin saying anything about that.
> burn petrol.
Well yeah, so making electricity unreliable and expensive, and the end-user’s problem (residential roof-top solar) is somehow supposed help?
Let’s ship all our raw minerals and move all our manufacturing overseas to counties that care less about environmental impacts and have dirtier electricity, then ship the final products back, all using the dirties bunker fuel there is.
How is that supposed to help?
I mean, I used to work for The Wilderness Society in South Australia, now I live in Tasmania and am a card carrying One Nation member.
Because I’m not a complete fucking idiot.
Wait till you learn about the nepotism going on with the proposed Bell Bay Windfarm and Cimitiere Plains Solar projects.
I’m all for sensible energy project development, but there’s only so much corruption I’m willing to sit back and watch.
With the amount of gas, coal, and uraniam Australia has, it should be a manufacturing powerhouse, and host a huge itinerant worker population with pathways to residency / citizenship, drawn from the handful of countries that built this country. And citizens could receive a monthly stipend as their share of the enormous wealth the country should be generating.
Japan resells our LNG at a profit. Our government is an embarrassment.
"As a consequence of the negative TOA RF, the Hunga eruption is estimated to have decreased global surface air temperature by about 0.05 K during 2022-2023; due to larger interannual variability, this temperature change cannot be observed."
https://juser.fz-juelich.de/record/1049154/files/Hunga_APARC...
Commercial aviation’s profitability hinges on being able to carry only as much fuel as strictly[1] required.
How can batteries compete with that constraint?
Also, commercial aviation aircraft aren’t time-restricted by refuelling requirements. How are batteries going to compete with that? Realistically, a busy airport would need something like a closely located gigawatt scale power plant with multi-gigawatt peaking capacity to recharge multiple 737 / A320 type aircraft simultaneously.
I don’t believe energy density parity with jet fuel is sufficient. My back of the neocortex estimate is that battery energy density would need to 10x jet fuel to be of much practical use in the case of narrow-body-and-up airliner usefulness.
So indeed, an airport serving dozens or hundreds of electric aircrafts a day will need obscene amounts of electric energy.
Electric aviation is interesting but as someone who knows a bit about the industry, biofuels make more sense here.