This is a very interesting question, and a great motivator for Galois theory, kind of like a Zen koan. (e.g. "What is the sound of one hand clapping?")
But the question is inherently imprecise. As soon as you make a precise question out of it, that question can be answered trivially.
One of the roots is 1, choosing either adjacent one as a privileged group generator means choosing whether to draw the same complex plane clockwise or counterclockwise.
1) Exactly one C
2) Exactly two isomorphic Cs
3) Infinitely many isomorphic Cs
It's not really the question of whether i and -i are the same or not. It's the question of whether this question arises at all and in which form.
Haven’t thought it through so I’m quite possibly wrong but it seems to me this implies that in such a situation you can’t have a coordinate view. How can you have two indistinguishable views of something while being able to pick one view?