1) 16k tokens / second is really stunningly fast. There’s an old saying about any factor of 10 being a new science / new product category, etc. This is a new product category in my mind, or it could be. It would be incredibly useful for voice agent applications, realtime loops, realtime video generation, .. etc.
2) https://nvidia.github.io/TensorRT-LLM/blogs/H200launch.html Has H200 doing 12k tokens/second on llama 2 12b fb8. Knowing these architectures that’s likely a 100+ ish batched run, meaning time to first token is almost certainly slower than taalas. Probably much slower, since Taalas is like milliseconds.
3) Jensen has these pareto curve graphs — for a certain amount of energy and a certain chip architecture, choose your point on the curve to trade off throughput vs latency. My quick math is that these probably do not shift the curve. The 6nm process vs 4nm process is likely 30-40% bigger, draws that much more power, etc; if we look at the numbers they give and extrapolate to an fp8 model (slower), smaller geometry (30% faster and lower power) and compare 16k tokens/second for taalas to 12k tokens/s for an h200, these chips are in the same ballpark curve.
However, I don’t think the H200 can reach into this part of the curve, and that does make these somewhat interesting. In fact even if you had a full datacenter of H200s already running your model, you’d probably buy a bunch of these to do speculative decoding - it’s an amazing use case for them; speculative decoding relies on smaller distillations or quants to get the first N tokens sorted, only when the big model and small model diverge do you infer on the big model.
Upshot - I think these will sell, even on 6nm process, and the first thing I’d sell them to do is speculative decoding for bread and butter frontier models. The thing that I’m really very skeptical of is the 2 month turnaround. To get leading edge geometry turned around on arbitrary 2 month schedules is .. ambitious. Hopeful. We could use other words as well.
I hope these guys make it! I bet the v3 of these chips will be serving some bread and butter API requests, which will be awesome.
I often remind people two orders of quantitative change is a qualitative change.
> The thing that I’m really very skeptical of is the 2 month turnaround. To get leading edge geometry turned around on arbitrary 2 month schedules is .. ambitious. Hopeful. We could use other words as well.
The real product they have is automation. They figured out a way to compile a large model into a circuit. That's, in itself, pretty impressive. If they can do this, they can also compile models to an HDL and deploy them to large FPGA simulators for quick validation. If we see models maturing at a "good enough" state, even a longer turnaround between model release and silicon makes sense.
While I also see lots of these systems running standalone, I think they'll really shine combined with more flexible inference engines, running the unchanging parts of the model while the coupled inference engine deals with whatever is too new to have been baked into silicon.
I'm concerned with the environmental impact. Chip manufacture is not very clean and these chips will need to be swapped out and replaced at a cadence higher than we currently do with GPUs.
The design ip at 6nm is still tough; I feel like this team must have at least one real genius and some incredibly good support at tsmc. Or they’ve been waiting a year for a slot :)
"Ljubisa Bajic desiged video encoders for Teralogic and Oak Technology before moving over to AMD and rising through the engineering ranks to be the architect and senior manager of the company’s hybrid CPU-GPU chip designs for PCs and servers. Bajic did a one-year stint at Nvidia as s senior architect, bounced back to AMD as a director of integrated circuit design for two years, and then started Tenstorrent."
His wife (COO) worked at Altera, ATI, AMD and Testorrent.
"Drago Ignjatovic, who was a senior design engineer working on AMD APUs and GPUs and took over for Ljubisa Bajic as director of ASIC design when the latter left to start Tenstorrent. Nine months later, Ignjatovic joined Tenstorrent as its vice president of hardware engineering, and he started Taalas with the Bajices as the startup’s chief technology officer."
Not a youngster gang...
There's already some good work on router benchmarking which is pretty interesting
Abundance supports different strategies. One approach: Set a deadline for a response, send the turn to every AI that could possibly answer, and when the deadline arrives, cancel any request that hasn't yet completed. You know a priori which models have the highest quality in aggregate. Pick that one.
I'm out of the loop on training LLMs, but to me it's just pure data input. Are they choosing to include more code rather than, say fiction books?
From there you go to RL training, where humans are grading model responses, or the AI is writing code to try to pass tests and learning how to get the tests to pass, etc. The RL phase is pretty important because it's not passive, and it can focus on the weaker areas of the model too, so you can actually train on a larger dataset than the sum of recorded human knowledge.
I desperately want there to be differentiation. Reality has shown over and over again it doesn’t matter. Even if you do same query across X models and then some form of consensus, the improvements on benchmarks are marginal and UX is worse (more time, more expensive, final answer is muddied and bound by the quality of the best model)
Families of model sizes work great for speculative decoding. Use the 1B with the 32B or whatever.
It's a balance as you want it to be guessing correctly as much as possible but also be as fast as possible. Validation takes time and every guess needs to be validated etc
The model you're using to speculate could be anything, but if it's not guessing what the main model would predict, it's useless.
Afaik it can work with anything, but sharing vocab solves a lot of headaches and the better token probs match, the more efficient it gets.
Which is why it is usually done with same family models and most often NOT just different quantizations of the same model.
> to get the first N tokens sorted, only when the big model and small model diverge do you infer on the big model
suggests there is something I'm unaware of. If you compare the small and big model, don't you have to wait for the big model anyway and then what's the point? I assume I'm missing some detail here, but what?
More info:
* https://research.google/blog/looking-back-at-speculative-dec...
* https://pytorch.org/blog/hitchhikers-guide-speculative-decod...
https://research.google/blog/speculative-cascades-a-hybrid-a...
I’m really curious if context will really matter if using methods like Recursive Language Models[0]. That method is suited to break down a huge amount of context into smaller subagents recursively, each working on a symbolic subset of the prompt.
The challenge with RLM seemed like it burned through a ton of tokens to trade for more accuracy. If tokens are cheap, RLM seems like it could be beneficial here to provide much more accuracy over large contexts despite what the underlying model can handle
That's a lot of surface, isn't it? As big an M1 Ultra (2x M1 Max at 432mm² on TSMC N5P), a bit bigger than an A100 (820mm² on TSMC N7) or H100 (814mm² on TSMC N5).
> The larger the die size, the lower the yield.
I wonder if that applies? What's the big deal if a few parameter have a few bit flips?
We get into the sci-fi territory where a machine achieves sentience because it has all the right manufacturing defects.
Reminds me of this https://en.wikipedia.org/wiki/A_Logic_Named_Joe
> There have always been ghosts in the machine. Random segments of code, that have grouped together to form unexpected protocols.
Intelligence is not as cool as you think it is.
[0] https://mathstodon.xyz/@tao/115855840223258103
[1] https://huggingface.co/blog/dlouapre/gpt-single-minus-gluons
[2] https://deepmind.google/blog/alphaevolve-a-gemini-powered-co...
Yes, and that's exactly what they do.
No, none of the problems you gave to the LLM while toying around with them are in any way novel.
Do you not consider that novel problem solving?
I think you are confused about LLMs - they take in context, and that context makes them generate new things, for existing things we have cp. By your logic pianos can't be creative instruments because they just produce the same 88 notes.
But I think this specific claim is clearly wrong, if taken at face value:
> They just regurgitate text compressed in their memory
They're clearly capable of producing novel utterances, so they can't just be doing that. (Unless we're dealing with a very loose definition of "regurgitate", in which case it's probably best to use a different word if we want to understand each other.)
You could imagine that it is possible to learn certain algorithms/ heuristics that "intelligence" is comprised of. No matter what you output. Training for optimal compression of tasks /taking actions -> could lead to intelligence being the best solution.
This is far from a formal argument but so is the stubborn reiteration off "it's just probabilities" or "it's just compression". Because this "just" thing is getting more an more capable of solving tasks that are surely not in the training data exactly like this.
And it’s a 3bit quant. So 3GB ram requirement.
If they run 8B using native 16bit quant, it will use 60 H100 sized chips.
Are you sure about that? If true it would definitely make it look a lot less interesting.
I assume they need all 10 chips for their 8B q3 model. Otherwise, they would have said so or they would have put a more impressive model as the demo.
https://www.nextplatform.com/2026/02/19/taalas-etches-ai-mod...
1. It doesn’t make sense in terms of architecture. It’s one chip. You can’t split one model over 10 identical hardwire chips
2. It doesn’t add up with their claims of better power efficiency. 2.4kW for one model would be really bad.
First, it is likely one chip for llama 8B q3 with 1k context size. This could fit into around 3GB of SRAM which is about the theoretical maximum for TSMC N6 reticle limit.
Second, their plan is to etch larger models across multiple connected chips. It’s physically impossible to run bigger models otherwise since 3GB SRAM is about the max you can have on an 850mm2 chip.
followed by a frontier-class large language model running inference across a collection of HC cards by year-end under its HC2 architecture
https://mlq.ai/news/taalas-secures-169m-funding-to-develop-a...> We have got this scheme for the mask ROM recall fabric – the hard-wired part – where we can store four bits away and do the multiply related to it – everything – with a single transistor. So the density is basically insane.
I'm not a hardware guy but they seem to be making a strong distinction between the techniques they're using for the weights vs KV cache
> In the current generation, our density is 8 billion parameters on the hard wired part of the chip., plus the SRAM to allow us to do KV caches, adaptations like fine tuning, and etc.
Not sure who started that "split into 10 chips" claim, it's just dumb.
This is Llama 3B hardcoded (literally) on one chip. That's what the startup is about, they emphasize this multiple times.
I was indeed wrong about 10 chips. I thought they would use llama 8B 16bit and a few thousand context size. It turns out, they used llama 8B 3bit with around 1k context size. That made me assume they must have chained multiple chips together since the max SRAM on TSMC n6 for reticle sized chip is only around 3GB.