upvote
One way to sharpen the question is to stop asking whether C is "fundamental" and instead ask whether it is forced by mild structural constraints. From that angle, its status looks closer to inevitability than convenience.

Take R as an ordered field with its usual topology and ask for a finite-dimensional, commutative, unital R-algebra that is algebraically closed and admits a compatible notion of differentiation with reasonable spectral behavior. You essentially land in C, up to isomorphism. This is not an accident, but a consequence of how algebraic closure, local analyticity, and linearization interact. Attempts to remain over R tend to externalize the complexity rather than eliminate it, for example by passing to real Jordan forms, doubling dimensions, or encoding rotations as special cases rather than generic elements.

More telling is the rigidity of holomorphicity. The Cauchy-Riemann equations are not a decorative constraint; they encode the compatibility between the algebra structure and the underlying real geometry. The result is that analyticity becomes a global condition rather than a local one, with consequences like identity theorems and strong maximum principles that have no honest analogue over R.

I’m also skeptical of treating the reals as categorically more natural. R is already a completion, already non-algebraic, already defined via exclusion of infinitesimals. In practice, many constructions over R that are taken to be primitive become functorial or even canonical only after base change to C.

So while one can certainly regard C as a technical device, it behaves like a fixed point: impose enough regularity, closure, and stability requirements, and the theory reconstructs it whether you intend to or not. That does not make it metaphysically fundamental, but it does make it mathematically hard to avoid without paying a real structural cost.

reply
This is the way I think. C is "nice" because it is constructed to satisfy so many "nice" structural properties simultaneously; that's what makes it special. This gives rise to "nice" consequences that are physically convenient across a variety of applications.

I work in applied probability, so I'm forced to use many different tools depending on the application. My colleagues and I would consider ourselves lucky if what we're doing allows for an application of some properties of C, as the maths will tend to fall out so beautifully.

reply
Not meaning to derail an interesting conversation, but I'm curious about your description of your work as "applied probability". Can you say any more about what that involves?
reply
Absolutely, thanks for asking!

Pure probability focuses on developing fundamental tools to work with random elements. It's applied in the sense that it usually draws upon techniques found in other traditionally pure mathematical areas, but is less applied than "applied probability", which is the development and analysis of probabilistic models, typically for real-world phenomena. It's a bit like statistics, but with more focus on the consequences of modelling assumptions rather than relying on data (although allowing for data fitting is becoming important, so I'm not sure how useful this distinction is anymore).

At the moment, using probabilistic techniques to investigate the operation of stochastic optimisers and other random elements in the training and deployment of neural networks is pretty popular, and that gets funding. But business as usual is typically looking at ecological models involving the interaction of many species, epidemiological models investigating the spread of disease, social network models, climate models, telecommunication and financial models, etc. Branching processes, Markov models, stochastic differential equations, point processes, random matrices, random graph networks; these are all the common objects used. Actually figuring out their behaviour can require all kinds of assorted techniques though, you get to pull from just about anything in mathematics to "get the job done".

reply
> I believe real numbers to be completely natural

You can teach middle school children how to define complex numbers, given real numbers as a starting point. You can't necessarily even teach college students or adults how to define real numbers, given rational numbers as a starting point.

reply
I used to feel the same way. I now consider complex numbers just as real as any other number.

The key to seeing the light is not to try convincing yourself that complex number are "real", but to truly understand how ALL numbers are abstractions. This has indeed been a perspective that has broadened my understanding of math as a whole.

Reflect on the fact that negative numbers, fractions, even zero, were once controversial and non-intuitive, the same as complex are to some now.

Even the "natural" numbers are only abstractions: they allow us to categorize by quantity. No one ever saw "two", for example.

Another thing to think about is the very nature of mathematical existence. In a certain perspective, no objects cannot exist in math. If you can think if an object with certain rules constraining it, voila, it exists, independent of whether a certain rule system prohibit its. All that matters is that we adhere to the rule system we have imagined into being. It does not exist in a certain mathematical axiomatic system, but then again axioms are by their very nature chosen.

Now in that vein here is a deep thought: I think free will exists just because we can imagine a math object into being that is neither caused nor random. No need to know how it exists, the important thing is, assuming it exists, what are its properties?

reply
A question I enjoy asking myself when I'm wondering about this stuff is "if there are alien mathematicians in a distant galaxy somewhere, do they know about this?"

For complex numbers my gut feeling is yes, they do.

reply
I wonder off and on if in good fiction of "when we meet aliens and start communicating using math"- should the aliens be okay with complex residue theorems? I used to feel the same about "would they have analytic functions as a separate class" until I realized how many properties of polynomials analytic functions imitate (such as no nontrivial bounded ones).
reply
For me, the complex numbers arise as the quotients of 2-dimensional vectors (which arise as translations of the 2-dimensional affine space). This means that complex numbers are equivalence classes of pairs of vectors is a 2-dimesional vector space, like 2-dimensional vectors are equivalence classes of pairs of points in a 2-dimensional affine space or rational numbers are equivalence classes of pairs of integers, or integers are equivalence classes of pairs of natural numbers, which are equivalence classes of equipotent sets.

When you divide 2 collinear 2-dimensional vectors, their quotient is a real number a.k.a. scalar. When the vectors are not collinear, then the quotient is a complex number.

Multiplying a 2-dimensional vector with a complex number changes both its magnitude and its direction. Multiplying by +i rotates a vector by a right angle. Multiplying by -i does the same thing but in the opposite sense of rotation, hence the difference between them, which is the difference between clockwise and counterclockwise. Rotating twice by a right angle arrives in the opposite direction, regardless of the sense of rotation, therefore i*i = (-i))*(-i) = -1.

Both 2-dimensional vectors and complex numbers are included in the 2-dimensional geometric algebra, whose members have 2^2 = 4 components, which are the 2 components of a 2-dimensional vector together with the 2 components of a complex number. Unlike the complex numbers, the 2-dimensional vectors are not a field, because if you multiply 2 vectors the result is not a vector. All the properties of complex numbers can be deduced from those of the 2-dimensional vectors, if the complex numbers are defined as quotients, much in the same way how the properties of rational numbers are deduced from the properties of integers.

A similar relationship like that between 2-dimensional vectors and complex numbers exists between 3-dimensional vectors and quaternions. Unfortunately the discoverer of the quaternions, Hamilton, has been confused by the fact that both vectors and quaternions have multiple components and he believed that vectors and quaternions are the same thing. In reality, vectors and quaternions are distinct things and the operations that can be done with them are very different. This confusion has prevented for many years during the 19th century the correct use of quaternions and vectors in physics (like also the confusion between "polar" vectors and "axial" vectors a.k.a. pseudovectors).

reply
Also, with elementary math: y+ as positive exponential numbers, y- as negative. Try rotating 90 deg the axis, into the -x part. What happens?
reply
> Is this the shadow of something natural that we just couldn't see

In special relativity there are solutions that allow FTL if you use imaginary numbers. But evidence suggests that this doesn’t happen.

reply
We have too much mental baggage about what a "number" is.

Real numbers function as magnitudes or objects, while complex numbers function as coordinatizations - a way of packaging structure that exists independently of them, e.g. rotations in SO(2) together with scaling). Complex numbers are a choice of coordinates on structure that exists independently of them. They are bookkeeping (a la double‑entry accounting) not money

reply
In my view nonnegative real numbers have good physical representations: amount, size, distance, position. Even negative integers don't have this types of models for them. Negative numbers arise mostly as a tool for accounting, position on a directed axis, things that cancel out each other (charge). But in each case it is the structure of <R,+> and not <R,+,*> and the positive and negative values are just a convention. Money could be negative, and debt could be positive, everything would be the same. Same for electrons and protons.

So in our everyday reality I think -1 and i exist the same way. I also think that complex numbers are fundamental/central in math, and in our world. They just have so many properties and connections to everything.

reply
> In my view nonnegative real numbers have good physical representations: amount, size, distance, position

I'm not a physicist, but do we actually know if distance and time can vary continuously or is there a smallest unit of distance or time? A physics equation might tell you a particle moves Pi meters in sqrt(2) seconds but are those even possible physical quantities? I'm not sure if we even know for sure whether the universe's size is infinite or finite?

reply
> In my view nonnegative real numbers have good physical representations

In my view, that isn’t even true for nonnegative integers. What’s the physical representation of the relatively tiny (compared to ‘most integers’) Graham’s number (https://en.wikipedia.org/wiki/Graham's_number)?

Back to the reals: in your view, do reals that cannot be computed have good physical representations?

reply
Good catch. Some big numbers are way too big to mean anything physical, or exist in any sense. (Up to our everyday experiences at least. Maybe in a few years, after the singularity, AI proves that there are infinite many small discrete structures and proves ultrafinitist mathematics false.)

I think these questions mostly only matter when one tries to understand their own relation to these concepts, as GP asked.

reply
I have MS in math and came to a conclusion that C is not any more "imaginary" than R. Both are convenient abstractions, neither is particularly "natural".
reply
How do you feel about N?
reply
I don't know if this will help, but I believe that all of mathematics arises from an underlying fundamental structure to the universe and that this results in it both being "discoverable" (rather than invented) and "useful" (as in helpful for describing, expressing and calculating things).
reply
Why do you believe that the same mathematical properties hold everywhere in the universe?
reply
Not the person you're replying too, but ... because it would be weird if they didn't.
reply
There are legitimate questions if physical constants are constant everywhere in the universe, and also whether they are constant over time. Just because we conceive something "should" be a certain way doesn't make it true. The zero and negative numbers were also weird yet valid. How is the structure of mathematics different from fundamental constants, which we also cannot prove are invariant.
reply
deleted
reply
The constants don't have to be the same everywhere. It is sufficient that everywhere in the universe follows some structure and rules, that's all.

Otherwise we have a random universe, which does not seem to be the case.

reply
A long time ago on HN, I said that I didn't like complex numbers, and people jumped all over my case. Today I don't think that there's anything wrong with them, I just get a code smell from them because I don't know if there's a more fundamental way of handling placeholder variables.

I get the same feeling when I think about monads, futures/promises, reactive programming that doesn't seem to actually watch variables (React.. cough), Rust's borrow checker existing when we have copy-on-write, that there's no realtime garbage collection algorithm that's been proven to be fundamental (like Paxos and Raft were for distributed consensus), having so many types of interprocess communication instead of just optimizing streams and state transfer, having a myriad of GPU frameworks like Vulkan/Metal/DirectX without MIMD multicore processors to provide bare-metal access to the underlying SIMD matrix math, I could go on forever.

I can talk about why tau is superior to pi (and what a tragedy it is that it's too late to rewrite textbooks) but I have nothing to offer in place of i. I can, and have, said a lot about the unfortunate state of computer science though: that internet lottery winners pulled up the ladder behind them rather than fixing fundamental problems to alleviate struggle.

I wonder if any of this is at play in mathematics. It sure seems like a lot of innovation comes from people effectively living in their parents' basements, while institutions have seemingly unlimited budgets to reinforce the status quo..

reply
> I believe real numbers to be completely natural,

Most of real numbers are not even computable. Doesn't that give you a pause?

reply
Why would we expect most real numbers to be computable? It's an idealized continuum. It makes perfect sense that there are way too many points in it for us to be able to compute them all.
reply
The idea is we can't actually prove a non-computable real number exists without purposefully having axioms that allow for deriving non-computable things. (We can't prove they don't exist either, without making some strong assumptions).
reply
> The idea is we can't actually prove a non-computable real number exists without purposefully having axioms that allow for deriving non-computable things.

Sorry, what do you mean?

The real numbers are uncountable. (If you're talking about constructivism, I guess it's more complicated. There's some discussion at https://mathoverflow.net/questions/30643/are-real-numbers-co... . But that is very niche.)

The set of things we can compute is, for any reasonable definition of computability, countable.

reply
I am talking about constructivism, but that's not entirely the same as saying the reals are not uncountable. One of the harder things to grasp one's head around in logic is that there is a difference between, so to speak, what a theory thinks is true vs. what is actually true in a model of that theory. It is entirely possible to have a countable model of a theory that thinks it is uncountable. (In fact, there is a theorem that countable models of first order theories always exist, though it requires the Axiom of Choice).
reply
I think that what matters here (and what I think is the natural interpretation of "not every real number is computable") is what the theory thinks is true. That is, we're working with internal notions of everything.
reply
I'd agree with that for practical purposes, but sometimes the external perspective can be enlightening philosophically.

In this case, to actually prove the statement internally that "not every real number is computable", you'd need some non-constructive principle (usually added to the logical system rather than the theory itself). But, the absence of that proof doesn't make its negation provable either ("every real number is computable"). While some schools of constructivism want the negation, others prefer to live in the ambiguity.

reply
1. Algebra: Let's say we have a linear operator T on a real vector space V. When trying to analyze a linear operator, a key technique is to determine the T-invariant subspaces (these are subspaces W such that TW is a subset of W). The smallest non-trivial T-invariant subspaces are always 1- or 2-dimensional(!). The first case corresponds to eigenvectors, and T acts by scaling by a real number. In the second case, there's always a basis where T acts by scaling and rotation. The set of all such 2D scaling/rotation transformations are closed under addition, multiplication, and the nonzero ones are invertible. This is the complex numbers! (Correspondence: use C with 1 and i as the basis vectors, then T:C->C is determined by the value of T(1).)

2. Topology: The fact the complex numbers are 2D is essential to their fundamentality. One way I think about it is that, from the perspective of the real numbers, multiplication by -1 is a reflection through 0. But, from an "outside" perspective, you can rotate the real line by 180 degrees, through some ambient space. Having a 2D ambient space is sufficient. (And rotating through an ambient space feels more physically "real" than reflecting through 0.) Adding or multiplying by nonzero complex numbers can always be performed as a continuous transformation inside the complex numbers. And, given a number system that's 2D, you get a key topological invariant of closed paths that avoid the origin: winding number. This gives a 2D version of the Intermediate Value Theorem: If you have a continuous path between two closed loops with different winding numbers, then one of the intermediate closed loops must pass through 0. A consequence to this is the fundamental theorem of algebra, since for a degree-n polynomial f, when r is large enough then f(r*e^(i*t)) traces out for 0<=t<=2*pi a loop with winding number n, and when r=0 either f(0)=0 or f(r*e^(i*t)) traces out a loop with winding number 0, so if n>0 there's some intermediate r for which there's some t such that f(r*e^(i*t))=0.

So, I think the point is that 2D rotations and going around things are natural concepts, and very physical. Going around things lets you ensnare them. A side effect is that (complex) polynomials have (complex) roots.

reply
As a math enjoyer who got burnt out on higher math relatively young, I have over time wondered if complex numbers aren’t just a way to represent an n-dimensional concept in n-1 dimensions.

Which makes me wonder if complex numbers that show up in physics are a sign there are dimensions we can’t or haven’t detected.

I saw a demo one time of a projection of a kind of fractal into an additional dimension, as well as projections of Sierpinski cubes into two dimensions. Both blew my mind.

reply
Might you mean an n-dimensional concept in n/2 dimensions?
reply
Complex numbers are just a field over 2D vectors, no? When you find "complex solutions to an equation", you're not working with a real equation anymore, you're working in C. I hate when people talk about complex zeroes like they're a "secret solution", because you're literally not talking about the same equation anymore.

There's this lack of rigor where people casually move "between" R and C as if a complex number without an imaginary component suddenly becomes a real number, and it's all because of this terrible "a + bi" notation. It's more like (a, b). You can't ever discard that second component, it's always there.

reply
We identify the real number 2 with the rational number 2 with the integer 2 with the natural number 2. It does not seem so strange to also identify the complex number 2 with those.
reply
If you say "this function f operates on the integers", you can't turn around and then go "ooh but it has solutions in the rationals!" No it doesn't, it doesn't exist in that space.
reply
I hate when people casually move "between" Q and Z as if a rational number with unit denominator suddenly becomes an integer, and it's all because of this terrible "a/b" notation. It's more like (a, b). You can't ever discard that second component, it's always there. ;)
reply
The author mentioned that the theory of the complex field is categorical, but I didn't see them directly mention that the theory of the real field isn't - for every cardinal there are many models of the real field of that size. My own, far less qualified, interpretation, is that even if the complex field is just a convenient tool for organizing information, for algebraic purposes it is as safe an abstraction as we could really hope for - and actually much more so than the real field.
reply
The real field is categorically characterized (in second-order logic) as the unique complete ordered field, proved by Huntington in 1903. The complex field is categorically characterized as the unique algebraic closure of the real field, and also as the unique algebraically closed field of characteristic 0 and size continuum. I believe that you are speaking of the model-theoretic first-order notion of categoricity-in-a-cardinal, which is different than the categoricity remarks made in the essay.
reply
I believe the author does talk about the first-order model theoretic perspective at one point, but yes, I was referring to that notion.
reply
Given that you have a Ph.D. in mathematics, this might seem hopelessly elementary, but who knows--I found it intuitive and insightful: https://betterexplained.com/articles/a-visual-intuitive-guid...

Related: https://news.ycombinator.com/item?id=18310788

reply
> Is this the shadow of something natural that we just couldn't see, or just a convenience?

They originally arose as tool, but complex numbers are fundamental to quantum physics. The wave function is complex, the Schrödinger equation does not make sense without them. They are the best description of reality we have.

reply
The schroedinger equation could be rewritten as two coupled equations without the need for complex numbers. Complex numbers just simplify things and "beautify it", but there is nothing "fundamental" about it, its just representation.
reply
But if you rewrite it as "two coupled equations", you are still using complex numbers, just in another guise.

Complex numbers are just two dimensional numbers, lol

reply
How does your question differ from the classic question more normally applied to maths in general - does it exist outside the mind (eg platonism) or no (eg. nominalism)?

If it doesn't differ, you are in the good company of great minds who have been unable to settle this over thousands of years and should therefore feel better!

More at SEP:

https://plato.stanford.edu/entries/philosophy-mathematics/

reply
I like to think of complex numbers as “just” the even subset of the two dimensional geometric algebra.

Almost every other intuition, application, and quirk of them just pops right out of that statement. The extensions to the quarternions, etc… all end up described by a single consistent algebra.

It’s as if computer graphics was the first and only application of vector and matrix algebra and people kept writing articles about “what makes vectors of three real numbers so special?” while being blithely unaware of the vast space that they’re a tiny subspace of.

reply
Clifford algebras are harder to philosophically motivate than complex numbers, so you've reduced a hard problem to a harder problem.
reply
Even the counting numbers arose historically as a tool, right?

Even negative numbers and zero were objected to until a few hundred years ago, no?

reply
> I believe real numbers to be completely natural, but far greater mathematicians than I found them objectionable only a hundred years ago

I believe even negative numbers had their detractors

reply
Maybe the bottom ~1/3, starting at "The complex field as a problem for singular terms", would be helpful to you. It gives a philosophical view of what we mean when we talk about things like the complex numbers, grounded in mathematical practice.
reply
deleted
reply
I'm presuming this is old news to you, but what helped me get comfortable with ℂ was learning that it's just the algebraic closure of ℝ.
reply
And why would R be "entitled" to an algebraic closure?

(I have a math degree, so I don't have any issues with C, but this is the kind of question that would have troubled me in high school.)

reply
> And why would R be "entitled" to an algebraic closure?

It's the birthright of every field.

reply
When it doesn't, we yearn for something that will fill the void so that it does. It's like that note you yearn for in a musical piece that the composer seems to avoid. One yearns for a resolution of the tension.

Complex numbers offers that resolution.

reply
The good news is that Q is not really entitled to a closure either.
reply
Personally, no number is natural. They are probably a human construct. Mathematics does not come naturally to a human. Nowadays, it seems like every child should be able to do addition, but it was not the case in the past. The integers, rationals, and real numbers are a convenience, just like the complex numbers.

A better way to understand my point is: we need mental gymnastics to convert problems into equations. The imaginary unit, just like numbers, are a by-product of trying to fit problems onto paper. A notable example is Schrodinger's equation.

reply
The complex numbers is just the ring such that there is an element where the element multiplied by itself is the inverse of the multiplicative identity. There are many such structures in the universe.

For example, reflections and chiral chemical structures. Rotations as well.

It turns out all things that rotate behave the same, which is what the complex numbers can describe.

Polynomial equations happen to be something where a rotation in an orthogonal dimension leaves new answers.

reply
> In particular, they arose historically as a tool for solving polynomial equations.

That is how they started, but mathematics becomes remarkable "better" and more consistent with complex numbers.

As you say, The Fundamental Theorem of Algebra relies on complex numbers.

Cauchy's Integral Theorem (and Residue Theorem) is a beautiful complex-only result.

As is the Maximum Modulus Principle.

The Open Mapping Theorem is true for complex functions, not real functions.

---

Are complex numbers really worse than real numbers? Transcendentals? Hippasus was downed for the irrationals.

I'm not sure any numbers outside the naturals exist. And maybe not even those.

reply
I've been thinking about this myself.

First, let's try differential equations, which are also the point of calculus:

  Idea 1: The general study of PDEs uses Newton(-Kantorovich)'s method, which leads to solving only the linear PDEs,
  which can be held to have constant coefficients over small regions, which can be made into homogeneous PDEs,
  which are often of order 2, which are either equivalent to Laplace's equation, the heat equation,
  or the wave equation. Solutions to Laplace's equation in 2D are the same as holomorphic functions.
  So complex numbers again.
Now algebraic closure, but better:

  Idea 2: Infinitary algebraic closure. Algebraic closure can be interpeted as saying that any rational functions can be factorised into monomials.
  We can think of the Mittag-Leffler Theorem and Weierstrass Factorisation Theorem as asserting that this is true also for meromorphic functions,
  which behave like rational functions in some infinitary sense. So the algebraic closure property of C holds in an infinitary sense as well.
  This makes sense since C has a natural metric and a nice topology.
Next, general theory of fields:

  Idea 3: Fields of characteristic 0. Every algebraically closed field of characteristic 0 is isomorphic to R[√-1] for some real-closed field R.
  The Tarski-Seidenberg Theorem says that every FOL statement featuring only the functions {+, -, ×, ÷} which is true over the reals is
  also true over every real-closed field.
I think maybe differential geometry can provide some help here.

  Idea 4: Conformal geometry in 2D. A conformal manifold in 2D is locally biholomorphic to the unit disk in the complex numbers.

  Idea 5: This one I'm not 100% sure about. Take a smooth manifold M with a smoothly varying bilinear form B \in T\*M ⊗ T\*M.
  When B is broken into its symmetric part and skew-symmetric part, if we assume that both parts are never zero, B can then be seen as an almost
  complex structure, which in turn naturally identifies the manifold M as one over C.
reply
Complex numbers are the inevitable and uniquely determined result of exploring the closure of <R,0,1,+,*>.

Starting with <inc, [? inc], (inc -> comp)*>:

1. a directed relation (increment)

2. The composition of increments, and

3. The repetition composition, i.e. a composition repeatedly performed for each increment traversed in a composition of increments,

...we inevitably get R, complex numbers and algebraic numbers, as follows (listed in one possible logical, not historical, progression):

• "Natural numbers" the elements generated by repeated compositions of increment.

• "Decrement", new notation, not a new relation, for the directed relation of increment from x to y, when written from y to x.

• "Zero", as the inevitable generated element from composing an increment with a decrement. Expands our elements to "Whole numbers".

• "Addition", c = a + b, a generator composed of increment traversal, applying increments. c = a + b, is: a, with as many increment compositions as are increments traversable in b.

• "Subtraction", as with decrement, the same relationship as addition, with opposite element ordering (a + b - b = a).

• "Negative" numbers, the inevitable generated elements of subtracting a longer/larger whole number from a shorter/lesser whole number. This expands "Whole numbers" to "Integers".

• "Multiplication", a new generator composed by adding a number, for each increment traversed in another number. I.e. c = a * b, where c is zero, with an addition of a, for each increment in b.

• "Division", the term for the reversely ordered multiplication (a * b / b = a). Together with multiplication, we have expanded our elements to "Rational numbers"

IMAGINARY NUMBERS

• "Imaginary" numbers by defining i, as the solution to the expression ±i = sqrt(-1). (Note all square roots are ±y = sqrt(x), and require a choice to get a unique root.) This new element is irreducible to previous elements, so expands numbers again to complex numbers.

Unlike the "choice" problem described in the article, "i" itself (in my view/definition) is not signed. The square root has two solutions, but the choice is not associated with "i", but with the choice of sign for any square root. So there is no need to choose +i or -i, and i is uniquely determined. Of course, having defined i, we know based on multiplicative identity that +i = (+1)*i = i. (And -i = (-1)*i, is not reducible beyond that.)

So, given i itself is unsigned, it is the unique solution to the constraint that defines it, and there is only the unique identity isomorphism.

ALGEBRAIC

• "Exponent" and "Log" are new generators, composed from multiplications of one number, applied repeatedly according to the traversal of another number. And now we have "Algebraic numbers".

CONCLUSION

And at this point, we have exhausted the ability of increment, increment composition, and composition via increment traversal, to generate any more elements. We have closure.

Regardless of the order of exploration, closure consists of one unique set of elements, and their unique structure.

LAST NOTE

None of this requires or implies un-constructible reals. Which have gotten arbitrarily shoe-horned into discussions and classes for a lot of unrelated math. Primarily due to a lack of a pithy term for un-constructible reals.

reply