""" “I’ve got just one question, Cliff,” he says, carving his way through the Eberhard-Faber. “Why is the sky blue?”
My mind is absolutely, profoundly blank. I have no idea. I look out the window at the sky with the primitive, uncomprehending wonder of a Neanderthal contemplating fire. I force myself to say something—anything. “Scattered light,” I reply. “Uh, yeah, scattered sunlight.”
“Could you be more specific?”
Well, words came from somewhere, out of some deep instinct of self-preservation. I babbled about the spectrum of sunlight, the upper atmosphere, and how light interacts with molecules of air.
“Could you be more specific?”
I’m describing how air molecules have dipole moments, the wave-particle duality of light, scribbling equations on the blackboard, and . . .
“Could you be more specific?”
An hour later, I’m sweating hard. His simple question—a five-year-old’s question—has drawn together oscillator theory, electricity and magnetism, thermodynamics, even quantum mechanics. Even in my miserable writhing, I admired the guy… """
Its like asking how does Java work or something like that? You can go from "The JVM interprets java byte code" to quite a lot of depth on how various parts work if you have enough knowledge.
"you type a phrase into google search, you press enter, get some results. tell me, in technical detail, what happened in that chain of actions"
the diversity of replies is fascinating, you learn a lot about a "full stack" candidate this way.
Feynman's classic "Why?" chain: https://www.youtube.com/watch?v=36GT2zI8lVA
Progression and regression are always going to be at war with each other. There will always be humans that want to hurt instead of help, there will always be humans who TRY to help but ultimately hurt. There will always be misinformation, there will always be lies, and there will always be liars.
The good news is there will also always be people trying to pull humanity forwards, to help other people, to save lives, to eradicate disease, educate, and expose the truth.
I don't think society will ever be solved in the way you're saying because there will always be hurtful people, but there will also always be good people to keep up the fight.
We value what we achieve with effort, I would say proportionally to energy put in (certainly true for me, thus I like harder efforts in activities and ie sport climbing).
> “Scattering” is the scientific term of art for molecules deflecting photons. Linguistically, it’s used somewhat inconsistently. You’ll hear both “blue light scatters more” (the subject is the light) and “atmospheric molecules scatter blue light more” (the subject is the molecule). In any case, they means the same thing
There's nothing ambiguous or inconsistent about this. In English a verb is transitive if it takes one or more objects in addition to the subject. In "Anna carries a book", "carries" is transitive. A verb is intransivite if it takes no object as with "jumps" in "The frog jumps.".
Many verbs in English are "ambitransitive" where they can either take an object or not, and the meaning often shifts depending on how it's used. There is a whole category of verbs called "labile verbs" where the subject of the intransitive form becomes the object of the transitive form:
* Intransitive: The bell rang.
* Transitive: John rang the bell.
"Scatter" is simply a labile verb:
* Intransitive: Blue light scatters.
* Transitive: Atmospheric molecules scatter blue light more.
Did English speakers say "this novel reads well" two, three hundred years ago?
For the first person there is 'listen' (or 'hear'). Does English not have a corresponding word for the third person ?
What about Germanaic or Nordic languages ? Do they have a third person analogue of 'listen' ?
> Listen the watchman’s cry upon the wall.
Edit: formatting
I have clarified what I am looking for in a cousin comment.
I can 'show' (or point someone to a) a sight that I am not myself creating in anyway. The word I am looking for would mean to 'make you hear' in the same may to show is to make you see.
I showed him the distant tower.
I ??? him the faint sound.
I played him the faint sound.
The bell rang should become The bell was rung, either way it means The bell rang another bell.
"the bell rang" illustrates an effect (the vibration and sound of the bell as it rings).
i think this is more an illustration of the ambiguity of the root word "ring", which can be an action by a subject upon an object, or to describe the behavior of the object itself.
Debates whether to update the sidenote with an explainer on ambitransitive and labile verbs
It’s basically the same reason the sky looks blue, just built into a wing. If you were to look at the wings from a different angle or get them wet, the blue often disappears because you're messing with that physical structure
Also, as many might know, blue eyes are the result of a lack of pigment (eumelanin). The iris is translucent, but Rayleigh scattering preferentially backscatters blue photons. Green eyes have some pigment, making them a mix of brown and blue.
https://en.wikipedia.org/wiki/Interferometric_modulator_disp...
(but sort of like chromophores in an octopus or cuttlefish, perhaps).
If they say, the air appears to be clear when I stare at something other than sky, the answer is you need more of air to be able to see its blue-ness, in much the same way that a small amount of murky water in your palm appears clear, but a lot of it does not.
If they ask, why don't I see that blue-ness at dawn or dusk, the answer is that the light source is at a different angle. The color of most objects changes when the light source is at a flat angle. And sun lights hits at a flat angle at dawn and dusk.
If they ask, what exactly is the inside phenomenon to see the sky color to be blue, then explanations like this blog are relevant.
If they ask, what exactly is a color, the answer is that it is a fiction made up by our brain.
Because it's the color of the atmosphere, specifically nitrogen and oxygen! It's technically correct to state this.
Gasp! But aren't nitrogen and oxygen usually described as "colorless"? Well, yes but... If they were truly colorless, the sky would be black. It's technically more correct to describe them as nearly colorless and very slightly blue. Very slightly because you need to see through kilometers of atmosphere to perceive the blue. It doesn't matter if the color is caused by absorption, or reflection, or (Rayleigh) scattering of certain wavelengths. The "color" of an object is simply the color you perceive with your eyes. If you perceive blue, it's technically correct to say its color is blue.
It's like saying plants are green because green is the color of chlorophyll. And in the case of chlorophyll, the color is caused by absorption not by scattering. But the physics is irrelevant. Green is its color.
Q: But sunsets/sunrises are red & orange not blue! A: the simplest answer is: color of an object can change under different light conditions. Specifically in this example, when seeing the sun through not kilometers but hundred of kilometers of atmosphere, all the blue-ish wavelengths have been scattered in random directions so only the red-ish wavelengths remain, thus the atmosphere is illuminated by progressively redder and redder light as the photons travel longer and longer distances through the atmosphere.
Thank you for making it. :)
(The blog post, that is, not the sky. If you made the sky - please let me know!)
- at night (of course)
- there are ~1 septillion stars that are all shiny
Basically, the scattering process that "remove" blue from the spectrum also removes green, albeit to a lesser extent. There are some greenish and yellowish wavelengths in the sunset sky, but they're dominated by red, so the overall color appears red or orange.
In order for the sky to look noticeably green, there would have to be something that scattered reds and blues, without significantly absorbing green.
If you try to interpolate between sky-blue and orange using graphics software, the result depends on what "color space" you're using. If your software interpolates based on hue, you might see green (or purple) in the middle. But that's not physically realistic.
A realistic model is to interpolate each wavelength of the continuous spectrum separately. Interpolating in RGB color space is a crude approximation to this. And if you try the experiment, you'll see that the midpoint between sky-blue and orange is a kind of muddy brown, not green.
Green + Red = Yellow
Red = Red
That is the natural transition from overhead sun to sunset as each higher energy wavelength gets cut off more and more. When blue is mostly gone and green starts to fade we call it the Golden Hour.
Implementation can be wonderfully useful as both a test of, and a forcing function for, really understanding something. At least when groundtruth is available.
Sunlight in space is considered white. When it reaches earth surface, it's considered a warmer color. Why human eyes that never (during evolution) saw sunlight without the atmosphere, consider it true white, and not colder color?
(I'm going to skip over some basic stuff, and use some generalities)
Each Cone in the eye responds to a range of frequencies. This means that things that unless it's on the extreme low, or high, end of the frequencies that the human eye can discern you are going to have two, or all three, Cone types responding. The strength of those responses is what your brain uses to interpret the color that you see.
The real problem is that out in space there is no attenuation of sunlight, it's bright. Super crazy bright. It basically overloads all of your Cones, and Rods, all at once, there is no way for your brain to find a signal of "oh there's more higher wavelengths here so interpret bluer than normal" because all of the signals got maxed out. If you max out all of the signals, you get white. It doesn't matter that in absolute terms there's more blue, the lower and mid frequencies are also maxed out.
Mid-day sun in a clear sky is very white, in the 5k-6k color temperature range. It's hard to get a sense of how white it is because of how bright it is. In fact, the color temperature on the surface can be even higher than in outer-space!
Compare this to a "warm" light bulb, which is around 2.5K. Sunrise/sunset is also around that range.
Perhaps the "warm color" sun mindset comes from the only times that people can look directly at it. That is to say, around sunrise or sunset.
Actually, I liked it so much that I went to the homepage of the blog, only to find out that this is the only article. Oh well... I hope there will be more to come!
(I will almost certainly do one on quantum mechanics, but that's such a big explanation that I want to do some simpler ones first)
https://www.youtube.com/watch?v=PbKsC4GCT5k
*Since blue is the shortest wave length...*
How does scattering work? Why does light scatter? _What does scattering even mean in the context of light?_
Any other questions give you the same disappointment?
Can you be more specific?
Like, dude, as if anyone would care about such a highly technical point, like eg some React framework quirk or race condition mitigation for specific generation of Intel procesdor or a semi-well known edge cases with btrfs inode behavior, even if I had been on that exact camp.
(Is there something in particular you're referring to? I feel like sticky nav and sidenotes aren't particularly unusual?)
https://www.youtube.com/watch?v=4a0FbQdH3dY
https://en.wikipedia.org/wiki/Rayleigh_scattering
I do have a question though.
The article says:
> blue and violet have the closest frequencies to a “resonant frequency” of nitrogen and oxygen molecules’s electron clouds
I thought it was more to do with the photon frequency matching the physical size of the air molecules? Or is that the same as its resonant frequency?
Direct link to timestamp 33:56
So it’s a combination of the composition of the thing and the environmental coupling with other vibrating things
Size and material composition are the primary factors
So for this case, the photon spectrum interact with nitrogen-oxygen mixture most efficiently at the frequency that reflects blue
I mostly studied sound frequency mixing with static objects (matching or cancelling the fs of room/space with the fs of a driver) but the principles of resonance hold across media
Prior to the great oxygenation event, Earth's sky was not blue; it was likely red-orange, carbon dioxide and methane being primary components.
"There's air in my room, it appears transparent. The sky is made of air, it appears blue. Why the difference"
But the winking and "cool guy" emojis are so grating. In general, technical explanations that apologize for themselves with constant reassurances like "don't worry" and "it's actually simple" undermine their own aim.
Your job -- if you're making content for people with double digit ages -- is to make the explanation as clear as you can, not to patronize and emotionally hand-hold the reader.
Not all readers are the same, so you will fail at your job for some readers.
But few readers are emotionless automatons that need nothing but dry technical content, unless it’s a topic they are very motivated to understand.
I would agree with that. And I think emojis and unnecessary reassurances subvert that goal. It's fluff, it's more to read, and if the writing isn't already clear, they don't fix the problem.
> But few readers are emotionless automatons that need nothing but dry technical content
Nothing in my post argues for dry technical content.
Bartosz Ciechanowski's superb work, which may have inspired the author, gets the balance just right without any hand-holding asides:
There.
Obligatory xkcd[2]: "Rayleigh Scattering" https://m.xkcd.com/1818/
Others?
Air is blue. The reason air is blue is blah blah blah physics, see the article we're all commenting on, but at the end of the day air is blue. We don't demand the same elaborate physics questions for why a ripe banana peel is yellow.
So was blue intrinsically pretty and thus made into the sky, or considered pretty and thus imprinted in the minds of humans that way?